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A B S T R A C T

Pathological Myopia (PM) is a globally prevalent eye disease which is one of the main causes of blindness.
In the long-term clinical observation, myopic maculopathy is a main criterion to diagnose PM severity. The
grading of myopic maculopathy can provide a severity and progression prediction of PM to perform treatment
and prevent myopia blindness in time. In this paper, we propose a feature fusion framework to utilize
tessellated fundus and the brightest region in fundus images as prior knowledge. The proposed framework
consists of prior knowledge extraction module and feature fusion module. Prior knowledge extraction module
uses traditional image processing methods to extract the prior knowledge to indicate coarse lesion positions
in fundus images. Furthermore, the prior, tessellated fundus and the brightest region in fundus images, are
integrated into deep learning network as global and local constrains respectively by feature fusion module.
In addition, rank loss is designed to increase the continuity of classification score. We collect a private color
fundus dataset from Beijing TongRen Hospital containing 714 clinical images. The dataset contains all 5 grades
of myopic maculopathy which are labeled by experienced ophthalmologists. Our framework achieves 0.8921
five-grade accuracy on our private dataset. Pathological Myopia (PALM) dataset is used for comparison with
other related algorithms. Our framework is trained with 400 images and achieves an AUC of 0.9981 for two-
class grading. The results show that our framework can achieve a good performance for myopic maculopathy
grading.
1. Introduction

Myopia is defined by spherical equivalent (SE) lower than −0.5
diopters (D) in ophthalmology [1]. It is one of the most common eye
diseases in the world. According to research, nearly 2 billion individu-
als (28.3% of the global population) suffer from myopia currently and
myopia will affect 4.76 billion population globally by 2050 (49.8% of
the global population) [2]. The cause of myopia is associated with a
series of tissue changes in eye including maculopathy, posterior staphy-
loma, tessellated fundus, atrophy, retinal detachment and so on. High
myopia or pathologic myopia can increase risk of cataract, glaucoma,
and retinal detachment [3]. Myopia can lead to irreversible visual
impairment or blindness, so early preventive diagnosis and treatment
is important for myopic patients.

Fundus image is often used in diagnosis of eye diseases because
it is convenient and non-invasive. Many lesions caused by myopia
can be observed in color fundus images such as fundus tessellation,
chorioretinal atrophy, macular atrophy, lacquer cracks. Due to various
reasons, large choroidal vessels become clear to be seen at posterior
fundus pole. This clinical symptom is defined as tessellated fundus [4].
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Fig. 1 shows a sample fundus image from Pathological Myopia (PALM)
dataset [5] and Fig. 1(b) shows the enlarged view of tessellated fundus
area. Besides, the green line marks chorioretinal atrophy in fundus
image. Many factors have been discovered to cause tessellated fun-
dus [6]. Diffuse chorioretinal atrophy, patchy chorioretinal atrophy and
macular atrophy are also associated with myopia [7–9]. Myopia leads
to increase of eye axis length, thinning and high visibility of chorioreti-
nal, which result in tessellated fundus and chorioretinal atrophy. The
initial chorioretinal atrophy is shown as diffuse chorioretinal atrophy.
With the severity increase, chorioretinal atrophy can develop into
patchy chorioretinal atrophy or macular atrophy [10]. As a result, the
presence of these lesions can be an indicator for pathological myopia or
myopic maculopathy. Based on these clinical experiences, Ohno-Matsui
et al. [11,12] proposed a grading system for pathologic myopia in a
meta analysis of pathologic myopia (META-PM). In this grading system,
pathological myopia is defined as eyes with myopic maculopathy equal
to or more severe than diffuse atrophy [12] and myopic maculopathy
are classified into 5 grades from non-myopia to pathologic myopia,
which represent different myopia stage. Based on a long-term clinic
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Fig. 1. Example of pathologic myopia fundus from Pathological Myopia (PALM)
dataset [5]. Atrophy is labeled with green line and (b) show the enlarged details of
tessellated fundus.

observation, there are different rate of progression to more severe
stages. For example, only 13.4% of eyes with tessellated fundus (grade
1) will progress but 49.2% in eyes with diffuse chorioretinal atrophy
(grade 2), 70.3% in eyes with patchy chorioretinal atrophy (grade 3)
will progress after the first examination [12]. To determine the stage
and progress risk of pathological myopia, it is essential to grade myopic
maculopathy.

In recent years, deep learning has achieved long-term rapid devel-
opment, especially for computer vision. Many deep neural networks
have been widely used in medical image diagnosis algorithms, such as
Resnet [13], Densenet [14], Efficientnet [15], U-Net [16], and other
novel algorithms [17–21]. In order to further improve the performance
of deep learning algorithms in medical images, the usage of profes-
sional clinical knowledge in deep learning methods has been explored.
In previous works on myopic maculopathy grading or pathological
myopia detection, researchers tend to ignore the prior knowledge of
clinical biomarkers in myopic maculopathy. On the other hand, in the
algorithms of joint segmentation and grading, the lesions are labeled
manually as ground truth labels for segmentation task. These pixel-level
annotations are time-consuming and labor-intensive. These annotations
often require experienced ophthalmologists with years of professional
training to label.

In order to overcome the difficulty of the pixel-level annotations
and introduce the lesion prior at the same time, we propose a coarse
lesion detection by traditional image processing algorithm. Without
extra manual annotation cost, these coarse label images can work as
a guide of lesion position. Tessellated fundus images indicate global
lesions rather than the specific location of lesions, so we pay more
attention to its overall severity which are utilized as global constraints
in our model. The brightest region images mainly reflect the location
of chorioretinal atrophy. Lesions, i.e., patchy atrophy and optic disc
parapapillary atrophy are shown as high brightness areas in fundus
images. Therefore, the brightest region images are used as local lesion
constraints in the network. In addition, we introduce a rank loss to im-
prove the grading performance, which captures the fact of continuous
development of disease.

To explore the effectiveness of our method, we use one private and
one public fundus image dataset in experiment section. The private
dataset is collected from Beijing TongRen Hospital and the public
dataset use Pathological Myopia (PALM) dataset [5]. A series of ab-
lation study has been carried out using the private dataset. For a
comparison with the state-of-the-art myopia diagnosis algorithms, we
use PALM dataset and compare with methods in its leaderboard. With-
out using the lesion segmentation label in PALM dataset, our algorithm
still achieves comparable performance.
2

Our main contributions can be summarized as:

∙ We introduce the information of tessellated fundus and the bright-
est image region as prior knowledge input to assist the grading.
A fusion module is proposed to consider all prior knowledge
together. Features extracted from raw image and prior knowledge
are fused to improve the grading performance. To the best of
our knowledge, we are the first to utilize prior knowledge in
algorithms related to myopic maculopathy grading.

∙ To make the grading results more interpretable in clinics, a simple
rank classification loss is introduced to increase the continuity of
the network output. This constraint loss forces our model consider
the continuous changes in disease severity, which makes features
from different grades more separated in the feature space.

The rest parts of this paper are organized as follows. In Section 2, we
review myopia diagnosis related literatures. In Section 3, we introduce
our prior extraction algorithms and our grading framework in details.
Next in Section 4, we introduce our dataset, experiments implemen-
tation and results. Then we discuss the existing challenge in myopic
maculopathy grading and our future work in Section 5. In the end,
Section 6 states the conclusion.

2. Related work

In this section, we will introduce previous work on automatic
diagnosis algorithms using medical images especially fundus images.

Diagnosis algorithms using medical images. The automatic diag-
nosis algorithm in medicine is a long-term concern problem. Especially
when deep learning methods are wildly used, the combination of com-
puter vision and medical image has become a feasible and effective way
to realize automatic diagnosis. For example, Varadarajan et al. [22]
reported a basic deep learning model with ‘attention’ layer to extract
refractive error features. Ting et al. [23] reviewed deep learning system
for screen of referable diabetic retinopathy, glaucoma suspect, age-
related macular degeneration and retinopathy of prematurity using
fundus images. G Quellec et al. [24] further explored few-shot learning
method to solve lack of fundus images and developed a framework to
detect 41 abnormal conditions. An convolutional neural network (CNN)
is trained for frequent conditions and an unsupervised probabilistic
model is trained for rare conditions. In addition, except fundus images,
other medical images are also investigated for automatic diagnosis. [25,
26] used colonoscopy images to detect polyp. [27] built a multi-scale
context-guided deep network to segment endoscopy images. [28,29]
used Computed Tomography (CT) images in COVID-19 diagnosis. [30]
combined magnetic resonance imaging (MRI) and positron emission
tomography (PET) in Alzheimer’s disease diagnosis.

Diagnosis algorithms for myopia or pathologic myopia. Auto-
matic disease diagnosis using medical images has been extensively
researched, including the usage of fundus images. Then we will focus
on diagnosis algorithms of pathologic myopia. These algorithms can
be divided into two categories: algorithms using traditional image
processing methods and algorithms using deep learning methods. Detail
descriptions of these algorithms are as following.

Traditional image processing algorithms. Existing work mainly
focuses on pathologic myopia detection. A system called PAMELA
(PAthological Myopia dEtection through peripapilLary Atrophy) is de-
veloped by Liu et al. [31–33]. There are three components in this
system to detect pathological myopia. The fundus images are pre-
processed firstly and then input to three different components. Peri-
papillary Atrophy Detection Module uses variational level set to detect
pathological myopia based on peripapillary atrophy feature. Tilted Disc
Assessment Module extracts the feature of optic disc tilt. Texture-
based ROI Assessment Module generates zonal region features based
on texture features and clinical image context. Finally, features from
these three modules are input into a SVM classifier to get the patho-
logical myopia detection outcome. Zhang et al. [34] trained an mRMR
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Fig. 2. Workflow of our framework.
optimized classifier using candidate feature set. In [35], Zhang et al.
fused heterogeneous biomedical information by multiple kernel learn-
ing methods to improve pathological myopia detection accuracy.

Deep learning algorithms. Preliminary investigations on myopic
maculopathy grading has been attempted. In [36,37], researchers ex-
amined color fundus images with basic deep learning algorithms to
identify myopic maculopathy degeneration. They demonstrated the
feasibility of deep learning algorithms in the clinical application of
myopic maculopathy grading. Deep learning methods have been ex-
plored to detect pathological myopia. In 2019, a series of work on
pathological myopia detection was proposed in PALM challenge of
ISBI 2019 [5]. Guo et al. [38] designed a lesion segment network
with pathological classification branch which verified that segment
and classification can improve each other. Hemelings et al. [39] also
combined classification with atrophy segment and optic disc segment.
98.67% accuracy was achieved on PALM test set. [40] proposed a
framework to detect pathologic myopia (PM) with a robust perfor-
mance. Multiple deep learning models are ensembled for different tasks
including three-class task (ungradable fundus/non-PM/PM), two-class
task (non-PM/PM) and five-grading task. [41] designed a dual-stream
deep convolutional neural networks for classification of pathologic
myopia. [42] identify myopic maculopathy with optical coherence to-
mography (OCT) images. In addition to the above supervised methods,
Li et al. [43] employed a self-supervised feature learning method.
By learning modality-invariant features and patient-similarity features,
the self-supervised model achieved comparable performance to the
supervised models for fundus disease detection.

Prior knowledge in medical image. To improve the performance
of deep learning methods in medical images, some researchers focused
on developing new workflow or novel network architecture. Other
researchers explored prior knowledge used in medical image analysis.
To detect lesions in medical images, previous work focused on learn-
ing features of healthy anatomy as prior knowledge. In [44], sparse
representation was used to learn normative anatomical variations and
localize pathologic regions in brain MRI (Magnetic Resonance Imag-
ing). A network-based prior was used as the normative distribution
in [45] for lesion detection of brain MRI. In segmentation tasks, object
shape, size, topology and inter-regions constraints were adopted as
nature prior [46]. A bounding box constraint was introduced as prior
to guide 2-D or 3-D segmentation of medical images (left-ventricle seg-
mentation, prostate segmentation, etc.) in [47]. Topological features in
cardiac magnetic resonance images [48] and shape descriptors for skin
lesions [49] were considered in medical image segmentation. Clinical
relations between organs were used in [50]. As for retinal images,
3

Tang et al. [51] proposed a lesion guided network (LGN) for automatic
diagnosis of diabetic retinopathy (DR). Using segmentation results of
lesions as prior knowledge, LGN achieved a better DR identification
performance. Yang [52] combined the lesion detection network and DR
grading network and realized a robust DR grading model. However, all
these collaborative networks for DR grading using segmentation and
classification need additional manual annotation which increase the
label cost.

3. Methodology

In this section, we will present our proposed myopic maculopathy
grading algorithm using prior knowledge in details. The algorithm will
be introduced in three subsections: prior knowledge extraction module,
feature fusion module and loss function. The workflow of our algorithm
is shown in Fig. 2. Color fundus images (𝐼𝐹 ) are firstly input into the
prior knowledge extraction module and get two kinds of clinical prior
knowledge: tessellated fundus images (𝐼𝑇 ) and the brightest region in
fundus images (𝐼𝐵). Then fundus images and prior knowledge are fused
and fed together into the grading network for training and testing.

3.1. Prior knowledge extraction module

The prior knowledge extraction module consists of two parts: tessel-
lated fundus extraction and the brightest region extraction. In clinical
research, doctors use tessellated fundus and chorioretinal atrophy le-
sions as critic features of myopic maculopathy during diagnose. In order
to get these lesion locations without manual annotation, tessellated
fundus images and the brightest region images are extracted from color
fundus images as a coarse substitute for the pixel-level annotations.
They work as prior knowledge in our framework and the extraction
algorithm by traditional image processing methods are presented in
details as follows.

3.1.1. Tessellated fundus extraction
Tessellated fundus is caused by the eye axial elongation. With the

development of myopia, the axial of eye becomes longer and the pig-
mented layer of retina (the retinal pigment epithelium, RPE) becomes
thinner. The pigment decrease makes the choroidal vessels clear to be
seen in fundus images and shown as tessellated fundus. As shown in
Fig. 3, given a fundus image in RGB color space, choroidal vessels are
clearly visible in its background in red channel comparing to other
channels or RGB images. So, we use red channel of fundus images to
extract tessellated fundus.
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Fig. 3. Choroidal vessels in different RGB channels. (a) Color fundus image of a eye
with tessellated fundus. (b) Red channel of (a). (c) Green channel of (a). (d) Blue
channel of (a).

Fig. 4. The impact of blood vessels in tessellated fundus extraction. (a) Original fundus
image (grade 0). (b) Tessellated fundus with retinal vessels. (c) Tessellated fundus after
remove retinal vessels.

Different from the blood vessels of the retinal vascular arcade, the
pixel value of choroidal vessels is brighter than surrounding back-
ground and approximate a Gaussian distribution on the cross section.
Based on our former work [53], multi-directional Gaussian filter can
match and extract the choroidal vessels. We consider choroidal vessels
as linear segments and the Gaussian spatial filtering template 𝐾 can be
defined as:

𝐾(𝑚, 𝑛) = exp
(

− 𝑚2

2𝜎2

)

, |𝑚| ≤ 3𝜎, |𝑛| ≤ 𝐿
2

(1)

(𝑚, 𝑛) represents the coordinate of the Gaussian spatial filter tem-
plate. A neighbor of points 𝐵 are used to calculate response value and
is defined in Eq. (2):

𝐵 =
{

(𝑚, 𝑛) ∣ |𝑚| ≤ 3𝜎, |𝑛| ≤ 𝐿
2

}

(2)

𝜎 and 𝐿 describes the size of the Gaussian filter. 𝜎 is related to the
width of the vessel and 𝐿 is the length of a section of blood vessel in
a given direction. We set 𝜎 to 4 and L to 18 here. In order to adjust
the response value and find choroidal vessel structure, every point in
Gaussian filter subtract the mean value of the whole filter and get the
filter used in this algorithm 𝐾 ′ shown in Eq. (3). 𝐴 denotes the number
of points in 𝐵.

𝐾 ′(𝑚, 𝑛) = 𝐾(𝑚, 𝑛) −
∑

(𝑚,𝑛)∈𝐵 𝐾(𝑚, 𝑛)
𝐴

(3)

The Gaussian filter 𝐾 ′ rotates every 15 degrees to produce a total
of 12 Gaussian filter with different orientations. These 12 Gaussian
filters convolve with each pixel value of the fundus images and obtain
the largest response value among 12 filters, and the direction of the
kernel function. The direction of the blood vessel is the direction of
the Gaussian function with the largest response value. All the choroidal
vessels detected make up the tessellated fundus image.

There are many factors can interfere with the detection of tessel-
lated fundus, such as the presence of retinal vessels and fibrous layer.
As a sample shown in Fig. 4(b), the retinal vessels are obvious in normal
fundus (grade 0) or mild tessellated fundus (grade 1) images. These lead
to false detection for tessellated fundus. In grade 0 and grade 1, the
extracted tessellated fundus is interfered with retinal vessels because of
the low retinal translucency and the small area of tessellated fundus.
As the severity of myopic maculopathy increase, retinal translucency
increases, and the color of retinal vessels becomes lighter in color
4

Fig. 5. Different percentage of the brightest region in a fundus image. (a) original
fundus image (grade 3) (b) green channel 5% (c) green channel 10% (d) green channel
15% (e) green channel 20% (f) red channel 10%.

fundus images. As a result, the number of retinal vessels is much smaller
than choroidal vessels and we can ignore the impact of retinal vessels
when the myopic maculopathy is more than grade 2. So, in order to
decrease the effects of these factors, retinal vessels in normal fundus
(grade 0) or mild tessellated fundus (grade 1) are removed. Similar to
the extraction of choroidal vessels, two-dimensional inverse Gaussian
filters proposed in [54] is applied to extract retinal vessels using green
channel of color fundus images. Then the retinal vessels are dilated and
subtracted from tessellated fundus. A sample of tessellated fundus after
remove retinal vessels is shown in Fig. 4(c).

3.1.2. The brightest region extraction
In fundus images, lesions including diffuse chorioretinal atrophy,

patchy chorioretinal atrophy, parapapillary atrophy (PPA) and macular
atrophy appear as bright spot region. Compared with surrounding
backgrounds, these lesions are white or yellowish bright areas, so the
brightest region can be used to indicate the lesion locations.

We extracted the 10% brightest pixels of the green channel of
fundus images, and the result is shown in Fig. 5(c). Comparing with red
channel, using green channel can avoid oversaturation in bright area
and reduce the effect of tessellated fundus as much as possible. The
images using different percentages and channels are shown in Fig. 5.
It shows that the 10% brightest pixels of the green channel can lo-
cate lesions and do not introduce too much additional background
information.

For normal fundus images, bright region is shown in the optic disc
region and its periphery. For fundus images containing lesions, bright
region has a higher response to chorioretinal atrophy. Particularly,
in the grade 3 images, the patchy atrophy area is usually distributed
around the macula and is the key feature in grade 3 macular lesion.
Patchy atrophy forming partial high brightness area on fundus and the
brightest region extraction results of this module can clearly mark these
lesions.

3.2. Feature fusion module

Using prior knowledge from the extraction module, we design a
feature fusion module to fuse prior knowledge with features of raw
images and integrate the fused features into the baseline network. We
will introduce the feature fusion module in three parts: tessellated
fundus fusion module (TFFM), brightest region fusion module (BRFM)
and feature fusion to network.
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3.2.1. Tessellated fundus fusion module (TFFM)
Tessellated fundus is a general lesion in myopia fundus. The position

of tessellated fundus is not as important as its overall severity. In
research on tessellated fundus, researchers often use the pixel number
of segmented tessellated fundus to measure its severity. As myopia
gets worse, the area of tessellated fundus will increase. So, we use the
tessellated fundus as a global attention in the feature fusion module,
namely Tessellated fundus fusion module (TFFM).

The tessellated fundus images are resized from 512 × 512 to
256 × 256 using an average pooling layer and get feature 𝐹 ′

𝑇 ∈
𝑅𝐶×𝐻×𝑊 . The feature maps 𝐹𝐹 ∈ 𝑅𝐶×𝐻×𝑊 are forward through 1 × 1
onvolutional layer to produce 𝐹 ′

𝐹 ∈ 𝑅𝐶×𝐻×𝑊 and 𝐹 ′′
𝐹 ∈ 𝑅𝐶×𝐻×𝑊 re-

pectively. 𝐹 ′
𝑇 is multiplied by 𝐹 ′

𝐹 and processed by a global averaging
ooling layer to produce the channel attention map 𝐹𝐴. Then a multi-
ayer perceptron (MLP) is applied to the channel attention feature maps
nd get 𝐹 ′

𝐴. The MLP is composed of two fully-connected layers and
orresponding activation function. The channel of hidden layer of the
LP is halved to reduce parameter. In the end, the output 𝑍𝑇 = 𝐹 ′

𝐴 ∗
′′
𝐹 . In short, the output of TFFM can be expressed by Eq. (4).

𝑇 =𝑀𝐿𝑃 (𝐺𝐴𝑃 (Conv(𝐹𝐹 ) ∗ Avg Pool(𝐹𝑇 )))

∗ Conv(𝐹𝐹 )
(4)

Inspired by the attention mechanism [55,56], we introduce the
essellated fundus feature as channel attention to perform the global
onstraint to feature maps of classifier. Shallow features are more
ensitive to the lesion. The channel attention map is produced by
using the tessellated fundus features with output feature maps from
irst convolutional layer of the backbone. By exploiting the relation
nformation between the shallow feature map and tessellated fundus,
he channel attention can act as a weight to decide which feature is
ore meaningful.

.2.2. Brightest region fusion module (BRFM)
We propose Brightest Region Fusion Module (BRFM) to utilize

he brightest region in images as the soft lesion mask. In order to bonus
he brighter region and punish the darker region, a mask bias is added
o the brightest region images. The bias is set to 0.5 and 𝐹𝐵 changes
rom [0, 1] to [0.5, 1.5]. After that, an average pooling is used to resize
eature maps from 512 × 512 to 256 × 256 and get 𝐹 ′

𝐵 . 𝐹 ′
𝐵 multiply 𝐹𝐹

o produce the local attention feature. As a result, the output of BRFM
an be expressed as Eq. (5).

𝐵 = 𝐹𝐹 ∗ Avg Pool(𝐹𝐵 + 𝑏𝑖𝑎𝑠) (5)

.2.3. Feature fusion to network
Features from prior knowledge are fused with features of raw im-

ges through TFFM and BRFM. Fused features from TFFM, as a global
onstraints, are 1×1×𝐶 feature vectors. 𝐶 means channel number. Then
he feature vectors are concatenated with feature vectors from network
nd input into fully-connected layers. Fused features from BRFM are
oncatenated with shallow features of the baseline network and form a
56 × 256 × 2𝐶 feature map. Since the brightest region work as local
onstraints, the features maintain the same size as features of raw
mages. To ensure the generalization of the fusion module and keep
he structure of baseline network, a 1 × 1 convolution layer is used as

feature selector to halve the channel number. So the fused feature
ap maintains 256×256×𝐶 and forward into the rest baseline network
odules.

.3. Loss function

In the training phase, the network is optimized by a loss function
onsisting of two parts, rank classification loss and cross entropy loss.
he two losses are presented in details in this section.
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.3.1. Rank classification loss (RC loss)
Since pathologic myopia lesions are continuously changing in clinic,

he degree of disease progression cannot be fully represented by simply
sing discrete five-grade classification. So, we propose to introduce the
oncept of ranking in the grading network to increase the continuous
epresentation of disease severity prediction.

A batch of fundus images are input into the network and {𝐼} denotes
ll the images within the batch. Then the feature vectors 𝑥𝑖, 𝑥𝑗 are
btained by corresponding fundus images 𝐼𝑖, 𝐼𝑗 from {𝐼} and 𝑦𝑖, 𝑦𝑗
epresent their labels. A score output from the rank branch by forward
alculation of the feature vectors 𝑠𝑖 = 𝑓

(

𝑥𝑖
)

, 𝑠𝑗 = 𝑓
(

𝑥𝑗
)

.

(

𝑠𝑖, 𝑠𝑗
)

=
{

0 𝑦𝑖 = 𝑦𝑗
(

𝑠𝑖 − 𝑠𝑗
)

∗
(

𝑦𝑖 − 𝑦𝑗
)

𝑦𝑖 ≠ 𝑦𝑗
(6)

𝑢 is an intermediate variable. If the labels of case 𝑖 and 𝑗 are same,
we do nothing and RC loss is 0 because we lack of corresponding
ground truth. If 𝑦𝑖 < 𝑦𝑗 then it should have 𝑠𝑖 < 𝑠𝑗 or if 𝑦𝑖 > 𝑦𝑗 then
𝑠𝑖 > 𝑠𝑗 . In other word, 𝑢 > 0. So, when 𝑢 < 0, a cost is added in the
loss. In the end, Rank Classification loss (RC loss) can be formulated
in Eq. (7).

𝐿𝑟𝑎𝑛𝑘 = 𝐿
(

𝑠𝑖, 𝑠𝑗
)

= ReLU
(

−𝑢
(

𝑠𝑖, 𝑠𝑗
))

(7)

Based on the predicted probability from fully-connected layers in
neural networks, we can distinguish grades of fundus images, but in
fact, this probability is only the accuracy probability, not the true
predicted probability of the top ranking. So, we add the rank branch
in the end of our framework and we get a continuous score label as
the predicted value. The ranking scores constrain different grades of
fundus images. The scores obtained from images with larger grade are
expected to remain larger than those images with smaller grade. In this
way, RC loss can constrain the continuity in grading.

3.3.2. Cross entropy (CE) loss function
Cross entropy loss is used in the classification branch:

𝐿𝐶𝐸 = − 1
𝑁

∑

𝑖

𝐺
∑

𝑐=1
𝑦𝑖𝑐 log

(

𝑝𝑖𝑐
)

(8)

where 𝑁 is the number of samples in a batch. 𝑝𝑖𝑐 denote the prediction
score of the 𝑖th sample 𝐼𝑖 for grade 𝑐. 𝑦𝑖𝑐 ∈ {0, 1} is the target label of
𝐼𝑖 belongs to grade 𝑐. 𝐺 is the total number of grades and is set to 5 in
his paper.

The overall loss function is the sum of above two parts of loss:

total = 𝐿𝑟𝑎𝑛𝑘 + 𝐿𝐶𝐸 (9)

4. Experiments

In this section, we use two datasets to evaluate the proposed frame-
work. One is a private dataset collected from Beijing TongRen Hospital
and another is Pathological Myopia (PALM) dataset [5]. We will in-
troduce each dataset in details firstly. Then we will show the results
of prior extraction. Finally, quantity results comparing with other
algorithm and visual results will be shown to evaluate our algorithm.
Abaltion study is also conducted to verify the effectiveness of each
module.

4.1. Dataset

Private fundus image dataset collected from Beijing TongRen Hos-
pital and PALM dataset are used to evaluate our method. We train our
network to grade myopic maculopathy using our private dataset. Since
the lack of public myopic maculopathy dataset and available methods,
we compare our method with corresponding baseline methods. For
further comparison with other existing algorithms, we train our net-

work using PALM dataset and compare with other pathological myopia
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Table 1
Number of fundus images in our private dataset.

Grade Myopic retinal changes Fundus image number Percent

0 No myopic retinal changes 176 24.7%
1 Tessellated fundus 280 39.2%
2 Diffuse chorioretinal atrophy 158 22.1%
3 Patchy chorioretinal atrophy 51 7.1%
4 Macular atrophy 49 6.9%
Sum – 714 –

Table 2
Number of fundus images in PALM dataset.

Image number PM non-PM

PALM-Training 400 213 187
PALM-Valid 400 211 189

diagnosis methods. Experiments show the effectiveness of our method
in pathological myopia grading and diagnosis.

4.1.1. Private dataset
We build a local private dataset for myopia grading containing 714

fundus images from Beijing TongRen Hospital. These fundus images
were obtained by different fundus cameras and all images are resized to
512 × 512 pixels. Images are labeled by ophthalmologists according to
the grading standards proposed by META-PM [11,12] based on myopic
maculopathy. Fundus images are classified into 5 grades: no macular
lesions (grade 0), tessellated fundus (grade 1), diffuse chorioretinal
atrophy (grade 2), patchy chorioretinal atrophy (grade 3) and mac-
ular atrophy (grade 4). Eyes with more than grade 2 are defined as
PM. Grading details and number of fundus images are summarized in
Table 1. And there are sample fundus images in each grade shown in
Fig. 6.

4.1.2. PALM dataset
Pathological Myopia (PALM) dataset [5] was published in IEEE

International Symposium on Biomedical Imaging (ISBI) 2019 for inves-
tigation of algorithms related to Pathological Myopia (PM). It contains
1200 fundus images and is divided into three equal parts for train-
ing, validation and testing (400 fundus images for each part). PALM
challenge consists of four tasks, including binary classification of PM
and non-PM, detection and segmentation of optic disc, localization of
fovea and segment of retinal lesions (atrophy and detachment) from
color fundus images. Two-class annotations for pathological and non-
pathological myopia classification are used to evaluate the performance
of our algorithm for two-class grading in this paper. For training set,
healthy, high myopia and pathologic myopia labels are included and
high myopia is classified into non-PM label. However, only training set
and validation set are publicly available up to now. We use training
set to train and valid our model and validation set for testing. Table 2
shows the distribution of PALM dataset used in this paper.

4.2. Implementation

The implementation details in the training or testing phase are
presented as following.

4.2.1. Training and implementation details
The model is implemented by Pytorch [57] and the grading back-

bone is pre-trained on ImageNet. The models are trained on AMD Ryzen
Threadripper 3960X 24-Core Processor and two NVIDIA RTX 3090 24G
GPU. In the training phase, Adam [58] optimizer start with learning
rate 0.001 and decrease by 30% every 15 epochs. Batch size is set to
32 and Training phase consists of 60 epochs totally.
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Fig. 6. Examples of color fundus images in each grade of myopic maculopathy. (a) No
myopic retinal changes; (b) Tessellated fundus; (c) Diffuse chorioretinal atrophy; (d)
Patchy chorioretinal atrophy; (e) Macular atrophy.

4.2.2. Data preprocessing
Tessellated fundus and the brightest region images are processed

and saved at the initial stage. They are used offline during training
and testing. All training and testing images are resized to 512 × 512.
Common online data augmentation is performed to both PALM dataset
and our local private dataset, including random rotation with the
rotation degree less than 10 degree, random horizontal and vertical flip
during train phase. Each triplet of fundus images, tessellated fundus
images and the brightest region images do the same augmentation at
the same time.

4.2.3. Evaluation metric
To evaluate the performance of our model, we use multiple eval-

uation metrics. For our private dataset, accuracy, precision, recall,
𝐹1_𝑠𝑐𝑜𝑟𝑒 and quadratic weighted kappa are adopted to measure grading
results. We use true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) to define accuracy, precision, recall and
𝐹1_𝑠𝑐𝑜𝑟𝑒. Specially for precision, recall and 𝐹1_𝑠𝑐𝑜𝑟𝑒, weighted metrics
are used which means we calculate metrics for each label and find
their average weighted by the number of true instances for each label.
Quadratic weighted kappa is defined in Eq. (14), where 𝑂𝑖,𝑗 represents
the number of 𝑖_𝑡ℎ class to be predicted as the 𝑗_𝑡ℎ class, 𝐸𝑖,𝑗 is the
number of 𝑖_𝑡ℎ class assigned as the 𝑗_𝑡ℎ class when all labels are
assigned randomly and 𝑤𝑖,𝑗 is corresponding weight shown in Eq. (15)
and 𝑁 means the number of all grades.

As for PALM dataset, area under the curve (AUC) is officially used in
the challenge for a fair comparison. AUC is the area under the Receiver
Operating Characteristic (ROC) Curve and can ignore the influence of
threshold when evaluate the binary classification model.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(10)

Precision = 𝑇𝑃
𝐹𝑃 + 𝑇𝑃

(11)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(12)

F1_score = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(13)

Quadratic Weighted Kappa = 1 −
∑

𝑖,𝑗 𝑤𝑖,𝑗𝑂𝑖,𝑗
∑

𝑖,𝑗 𝑤𝑖,𝑗𝐸𝑖,𝑗
(14)

𝑤𝑖,𝑗 =
(𝑖 − 𝑗)2

(𝑁 − 1)2
(15)
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Fig. 7. Results of tessellated fundus and the brightest region of fundus images in each grade.
4.3. Prior knowledge extraction results

In the proposed framework, prior knowledge extraction module will
extract tessellated fundus and the brightest region of fundus images
firstly. We present the results of the prior in each grade in Fig. 7.
As shown in pictures, tessellated fundus vary significantly in grade
0–3 and the brightest region images can clearly reflect the location
of chorioretinal atrophy in grade 3 and grade 4. This proves the
informative of these prior.

4.4. Experiment results

We compare the performance of our framework with other methods
using private myopic maculopathy grading dataset and Pathological
Myopia (PALM) dataset.

4.4.1. Experiments on private dataset
To evaluate the effectiveness of our methods, Table 3 lists the results

of the models trained and tested on our private dataset. As there is no
other work on grading myopic maculopathy reported in available liter-
ature, we compare our methods with popular CNN architectures which
are listed in Table 3, including ResNet50 [13], DenseNet121 [14],
Inception-V4 [59], Efficientnet-B3 [15]. These methods are trained and
tested with same data and same environment to ensure the fair com-
parison. We use two backbones to verify our modules: ResNet50 and
Efficientnet-B3. As Table 3 shows, our methods achieve superior per-
formance comparing with popular CNN methods. Comparing with our
baseline methods, our methods can achieve a more than 3% promotion
in accuracy, 2% in kappa. Besides, the network also has a corresponding
improvement in recall, precision and F1_score. A possible explanation
is that the usage of tessellated fundus and brightest region images in-
troduce more lesion information into the network as other modality. As
a result, the features extracted by CNN become more domain specific.
Fig. 8 shows the confusion matrix of our method (Resnet50 backbone)
and baseline method (Resnet50). The classification performance for
grade 1, grade 2 and grade 3 get more improvement. Apparently, tessel-
lated fundus and brightest region images are critic features in grade 1–3
according to grading standard. Therefore, we believe our framework
can fully exploit the prior information features in pathological myopia
diagnoses.
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Fig. 8. Confusion matrix of (a) Resnet50 and (b) our method.
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Fig. 9. CAM results of different grades. (a) Color fundus images. (b) CAM for Resnet50.
(c) CAM for our method.

Table 3
Comparison with other classification algorithm.

Algorithm ACC Kappa F1-score Recall Precision

Resnet50 [13] 0.8584 0.9184 0.8565 0.8584 0.8651
Densenet121 [14] 0.8699 0.9257 0.8692 0.8739 0.8739
Inceptionv4 [59] 0.8616 0.9154 0.8599 0.8616 0.8706
Efficientnet-B3 [15] 0.8662 0.9258 0.8653 0.8662 0.8772
Our (ResNet50) 0.8921 0.9327 0.8905 0.8921 0.8957
Our (Efficientnet-B3) 0.8979 0.9378 0.8974 0.8979 0.9037

4.4.2. Experiments on PALM dataset
Since there is no publicly available dataset for comparison of my-

opic macular degeneration, a PM dataset, PALM, is used to evaluate the
feature extraction ability of our algorithm in myopic fundus. A fully-
connected layer with 2 outputs replaces original FC layer in grading
model and trained with PALM training set. Table 4 shows the two-class
PM grading results on PALM validation set.

PALM dataset contains not only PM labels but also pixel level
segment labels of retinal lesions (atrophy and detachment). The ap-
proaches in the PALM competition all combined grading task with
segmentation task, which is listed and compared in Table 4. Comparing
with these multi task networks, our method can achieve a comparable
result in AUC without using additional annotations. The results indicate
that in our algorithm the coarse annotations can provide lesion position
information with the same reliability as pixel level annotations.
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Table 4
Comparison results on PALM dataset.
PALM competition team leaderboard [60] AUC

PringAN Smart Health 0.9991
Masker 0.9987
LAIS 0.9984
VistaLab 0.9980
KUL_VITO 0.9934
Our (ResNet50) 0.9981

Table 5
Ablation study of proposed modules.

Baseline TFFM BRFM RC loss Accuracy Kappa F1-score Recall Precision

Resnet50 0.8584 0.9184 0.8565 0.8584 0.8651
Resnet50 ✓ 0.8770 0.9355 0.8757 0.8770 0.8803
Resnet50 ✓ 0.8739 0.9261 0.8749 0.8768 0.8788
Resnet50 ✓ 0.8657 0.9207 0.8643 0.8657 0.8695
Resnet50 ✓ ✓ 0.8821 0.9308 0.8811 0.8822 0.8865
Resnet50 ✓ ✓ ✓ 0.8921 0.9327 0.8905 0.8921 0.8957

4.5. Feature map visualization

In Fig. 9, feature extracted by the neural network is visualized
using class activation map (CAM) [61]. CAM is a way to visualize the
contribution of feature maps to the target grade score. A higher weight
means a higher contribution and importance of corresponding features.
Red color indicates higher weights at the corresponding positions and
blue color indicates lower weights. Detail implementation of CAM can
be referred to [61]. In Fig. 9, the first column shows the original
color fundus images with pathological myopia. The second column is
the feature visualization from Resnet50 and the third column is our
method.

As shown in Fig. 9, guided by the prior knowledge, feature map
weights concentrate on lesion positions. In the first row, the original
fundus is grade 1. Baseline algorithm miss the parapapillary atrophy
location and a part of tessellated fundus but our algorithm can catch
them accurately. As for other grade in 2–4 rows, our algorithm shows
better performance on the interpretability of lesion location. The last
row is the visualization result of a fundus image from PALM dataset and
patchy atrophy is located accurately by our algorithm. The visualization
results indicate the high-relevance between lesions and grading results.
This proves the better grading performance of our model.

4.6. Ablation study

In this section, we fix all the training and testing parameters and
evaluate the importance of feature fusion modules, RC loss and their
compositions. As shown in Table 5, we use Resnet50 as the baseline
model, remove or add different modules and compare their perfor-
mance on 5-class grading on our private dataset. We can find that TFFM
works better than other two modules independently. The composition
of three modules can achieve the accuracy of 0.8921. The outperfor-
mance of networks with prior knowledge module or rank loss over
the baseline methods indicate the effectiveness of these modules. We
conjecture the composition of different prior knowledge fusion modules
can complement from different aspects during grading.

As shown in Table 6, in order to explore the increase of compu-
tational complexity, parameters and inference time brought by our
feature fusion modules, we conduct extra ablation study. Under the
same software and hardware environment showed in Section 4.2.1,
inference time for one 512 × 512 fundus image increase approximate
0.003 s by our network with feature fusion modules and RC loss. In
addition, 0.1 GMac of computational complexity and 0.02 M parame-
ters are increased. The experiments show that our module can utilize
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Table 6
Computational complexity of proposed modules.
Baseline TFFM BRFM RC loss Computational

complexity (GMac)
Number of
parameters (M)

Inference time (s)

Resnet50 34.5741772 25.5621 0.0067938
Resnet50 ✓ ✓ 35.6694849 25.5831 0.0081113
Resnet50 ✓ ✓ ✓ 35.6694859 25.5842 0.0096447
Fig. 10. Scatter plot of rank score of fundus images in each grade.

the prior and achieve a better perform comparing with baseline with a
limit increase consumption of computational resources.

Then we do more investigations on RC loss. Since we do not have
continuity labels of severity for each fundus, quality assessment is used
to evaluate the reasonability of rank loss. As shown in Fig. 10, we
visualized the rank scores and ground truth of all fundus maps in
the form of scatter plots. Rank score has a positive correlation with
the severity of pathological myopic lesion, especially in early stages
of myopic maculopathy. Fig. 11 shows the samples of fundus images
in different stage with rank scores. In grade 0, fundus images with
mild tessellated fundus have higher rank score than fundus without
tessellated fundus. A similar rank score represents a similar PM severity
in the same grade. A similar rank score in different grade tends to show
a worse PM severity in a high grade. The rank score can reflect the
continuous change of PM to a certain extent but still need improvement
to be more clinically reasonable.

5. Discussion

The above experiments have shown the effectiveness of our al-
gorithm. We use traditional image processing algorithms to generate
coarse annotations for fundus images. We have explored and exhib-
ited Resnet50 [13] and Efficientnet-B3 [15] as our backbone. For a
general extension, other backbone networks can be utilized by us-
ing our module to improve their performance in grading of myopic
maculopathy.

In medical image processing, annotation often requires people who
have years of professional training to perform, which is costly and
difficult to acquire. In addition, it will take more time for pixel-level
lesion labeling. As a result, it is hard to collect a large data set. Using
traditional image processing algorithms helps doctors save time on
annotation. The proposed prior information has shown its effectiveness
in grading of myopic maculopathy tasks.

However, the design of prior information extraction algorithm can
limit the framework performance when the extraction is not accurate.
Inaccurate detection using traditional methods will introduce false
information, which in turn makes it more difficult for neural networks
to identify and classify the images. For example, fundus vessels or fiber
layers can affect the extraction of tessellated fundus. The detection of
tessellated area are not exactly accurate choroidal vessels, which has
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already been shown in details in the above sections. In addition, the
quality of fundus images also affects the extraction of high brightness
region. Artifacts and overexposure can cause false detection of bright
regions. All these situations can introduce false information into the
framework and increase the difficulty of lesion identification. Further-
more, adding the traditional methods for prior knowledge extraction
will increase the computational complexity of the grading method. For
this problem, the traditional methods can consider the usage of com-
putational intelligence algorithms to perform more time and memory
efficiently. Some novel optimization algorithms are developed such as
moth search algorithm [62], slime mould algorithm [63], earthworm
optimization algorithm [64] and hunger games search algorithm [65]
which can be investigated to improve computational efficiency.

Our proposed framework is designed to fuse the prior features of
pathologic myopia but it can also be extended to other diseases, such
as diabetic retinopathy (DR) and glaucoma. The integration of clinical
knowledge can also benefit the detection and classification of these
diseases and it will be one of our future works in order to make our
network more general.

For the continuous representation of disease severity, rank loss
still has shortcomings. Without the true ranking ground truth, it is
impossible to distinguish deeply for fundus images with the same grade.
And only using discrete labels to measure continuous lesions will bring
information inflation. How to represent the continuous changes in
lesions will be our future work.

In clinics, pathological myopia appears complex characteristics.
Some lesions shown in color fundus images are indistinguishable from
the pathological myopia. Ophthalmologists can only preliminarily judge
these fundus images contain other diseases except myopia. In the
META-PM study [11], additional lesions such as lacquer cracks (Lc),
choroidal neovascularization (CNV) and Fuchs spot (Fs) can act as
‘‘plus’’ sign at an early stage of the disease. Moreover, there are other
diseases with the similar characteristics in fundus images, e.g., glau-
coma, which will affect the grading of myopic maculopathy. Even
professional ophthalmologists can hardly identify the disease using
color fundus images only without systematic examinations. In the
future work, we will consider the ‘‘plus’’ sign in the grading framework
and combine other visual examinations such as OCT (Optical Coherence
Tomography) and fundus autofluorescence.

6. Conclusion

Automatic diagnosis is important for early prevention and control
of pathological myopia and its resulting blindness. In this paper, we
propose a prior-knowledge fusion model to grade myopic maculopathy
with rank loss that is designed to increase the clinical applicability of
the network. The model achieves 0.8921 five-grade accuracy on 714
clinical fundus images from Beijing TongRen Hospital which outper-
forms the state-of-the-art methods. The model also achieves AUC of
0.9981 on Pathological Myopia (PALM) dataset [5]. The model has the
potential to be used for other disease grading analysis, such as diabetic
retinopathy (DR) and glaucoma. In the future, we plan to extend our
work to other eye diseases and using extra multi-modal data such as
OCT (Optical Coherence Tomography) and fundus autofluorescence.
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Fig. 11. Examples of fundus images of the same grade which are sorted by rank score.
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